

Small Satellites for Finnish Science Missions

Jaan Praks, Foresail team

Aalto University, Department of Electronics and Nanoengineering Finnish Centre of Excellence in Research of Sustainable Space

Growing with CubeSat generation

Aalto-1 2010

Gesa

A!

Reaktor Space Lab AU PROPULSIN

AURORA KUSAL ICEYE

rnational Quality Inno

Aalto Space spin-off companies

Now one of the biggest space companies in Finland

ICEYE

NIKE

NEWS

Iceye satellites return super-sharp radar images

Aalto University School of Electrical Engineering

 $\Lambda 2$

Established Education

Aalto Space Science and Technology

Major in Electronics and Nanoengineering

Student missions

Aalto satellite projects are integrated to Space Science and Technology curriculum.

Students get hands on design, integration, testing experience and operation.

Aalto University Student Satellite Program

Mature Small-sat Technology

VTT Fabry-Perot Spectrometers for CubeSat

AaSI VNIR spectral imager (400-900 nm) (IOD Aalto-1 2017) HW SWIR Specral imager (900-1400 nm) (IOD Hello World 2018) VISION Solar Occultation Imager (Launch 2019-2020) Asteroid Spectral Imaged Concept (500-2500 nm) (designed for APEX/HERA mission)

In-house developed complete Cubesat solutions

Aalto has developed two complete CubeSats and launched three.

Aalto has developed all avionics subsystems in-house.

Currently three more CubeSats ar under development.

Flight-proven technologies

Reaktor Space Lab

TM / TC radios TRL 9

Power supplies TRL 9

Battery packs TRL 9

Solar panels TRL 9

Onboard computers TRL 9

New science with smaller spacecraft

- Higher risk, more experimental missions
- Higher temporal and spatial characterization of phenomena
- Multi node systems
- Long baselines
- Better match with models

Increasing mission opportunities with ESA

W-Cube (ESA)

Science / Telecom

First ever W-band frequencies to be transmitted from space to Earth. Provides information for atmospheric and ionospheric propagation models. Higher frequencies will provide higher communication speeds for future telecom satellites.

- W-band (75 GHz) & Q-band (37.5 GHz) beacons
- Novel concentric ring antennas
- Left and right handed polarization switching

XFM (ESA)

X-ray spectrometer in orbit demonstration

Launch Q1/2021

Comet Interceptor National Contributions

NALSSEE.

CoCa

ESA F-class mission Comet Interceptor builds on small satellite technology

X

Spacecraft A

MIRMIS

X

E

OPIC

6

Science Centre

Navigation Experiment

Science Team

ESA Earth Explorer 10 Daedalus mission build on CubeSat technology

ASPECT / APEX (ESA)

Asteroid prospecting

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

FINNISH METEOROLOGICAL INSTITUTE Combining best space environment models, particle instruments and nanosatellites in Finland to develop technology for more sustainable space.

Goals

- Better knowledge of radiation physics in space
- Awareness of sustainability issues
- Science Space Program for Finland
- Deorbiting technologies for small satellites
- Solutions for radiation tolerant CubeSat platform
- Science instruments for future space
- Renewal of space scientists and engineers

School of Electrical Engineering

FORESAIL-1 mission

Mission goals

- Measure the energy and flux of energetic particle loss to the atmosphere with a representative energy and pitch angle resolution over a wide range of magnetic local times.
- Measure energetic neutral atoms (ENAs) of solar origin, to improve solar eruption energy budget estimations.
- Demonstrate a orbit maneuver with e-sail technology.

M. Palmroth et al. "FORESAIL-1 cubesat mission to measure radiation belt losses and demonstrate de-orbiting" JGR: Space Physics on 21 May 2019, arXiv:1905.09600 [physics.space-ph]

FORESAIL-1

Payloads

Plasma Brake (PB):

Deploying a long charged tether; measuring the strength of Coulomb drag in ionospheric plasma ram flow

Particle Telescope (PATE):

Defining pitch-angle and energy signatures of electrons precipitating from the radiation belts, and measuring solar ENAs.

Orbit: Mission duration: Launch date: ≈ 600 km altitude 5 years 2020

> Particle Telescope

CubeSat platform for Foresail GTO mission

- Radiation tolerant avionics
- Radiation tolerant software
- Modular shielding structure
- CubeSat attitude solution for GTO
 - (developed in collaboration with Aurora Propulsion)

Platform integration

School of Electrical Engineering

FORESAIL-2 mission

FORESAIL-2

Support ULF plasma wave modeling in Vlasiator

Coulomb Drag Experiment (CDE):

Deploying a long charged tether; measuring ambient plasma density, and the strength of Coulomb drag in different plasma densities

Relativistic Electron and Proton Experiment (REPE):

Measuring electron and proton spectra, to monitor the dynamics of the most penetrating radiation in the Van Allen belts

Magnetic field measurements

Mission duration:	6 months
Launch date:	2022
Required orbit:	Geostationary Transfer Orbit;
Very demanding,	will impose heavy constraints on the platform

FORESAIL-2

Electron flux > 1 MeV

First IOD of miniature Fabry-Perot EO spectral imager August 2018:

Mass: 592 g Power: max 2.5 W 500-900 nm Configurable ~20 nm spectral lines

Design drivers and constraints

3U CubeSat standard (ISI-POD variant) compatibility Lifetime for 5 years in LEO

- 3-axis attitude knowledge at accuracy (1 $^{\circ}$)
- 3-axis attitude stabilization in terms of rotation modes
- Rotation mode for PB payload (Rotation rate 180 $^\circ$ /s)
- Pointing mode for PATE (3 $^{\circ}$ pointing accuracy of rotation axis)

Communication to ground station with average daily download capacity (TBD)

Power for payloads missions during mission lifetime (TBD)

Pointing ability after the PB experiment

Attitude control ability with deployed tether and changed center of mass

Conductivity requirement for spacecraft surface area (TBD)

Openings and access ports for payloads (TBD)

Retro-reflector for platform (TBD).

Modelling team University of Helsinki

Instruments team University of Turku

Propulsion team Finnish Meteorological Institute

Platforms team Aalto University

Observations team University of Helsinki

Aalto University School of Electrical Engineering

